Conformal Anomalies and Einstein Equations

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

Work based on:

K. Meissner and H.N.: arXiv:1607.07312
H. Godazgar, K. Meissner and H.N.: arXiv:1612.01296
and work in progress

Executive Summary

Is the cancellation of conformal anomalies required

• Quantum mechanically: to ensure quantum consistency of perturbative quantum gravity?

... in analogy with cancellation of gauge anomalies for Standard Model (where cancellation is required to maintain renormalizability), and/or

• already at classical level: corrections from induced anomalous non-local action to Einstein Field Equations may potentially overwhelm smallness of Planck scale $\ell_{PL} \Rightarrow$ huge corrections to any solution?

If so, cancellation requirement could lead to *very strong* restrictions on admissible theories!

See also: G. 't Hooft, Int.J.Mod.Phys. D24(2015)154001

Conformal Symmetry

Conformal symmetry comes in two versions:

- 1. Global conformal symmetry = extension of Poincaré group by dilatations D and conformal boosts K^{μ}
- 2. Local dilatations = Weyl transformations $g_{\mu\nu}(x) \rightarrow e^{2\sigma(x)}g_{\mu\nu}(x)$

Important consequence: flat space limit of Weyl and diffeomorphism invariant theories exhibits full (global) conformal symmetry (via conformal Killing vectors)

 $\rightarrow \text{ important restrictions on effective actions } \Gamma = \Gamma[g] \\ \text{with } \Gamma[g] \text{ as the generating functional for correlators of } \\ \text{energy momentum tensor } \left\langle T_{\mu_1\nu_1}(x_1)\cdots T_{\mu_n\nu_n}(x_n)\right\rangle \Big|_{g_{\mu\nu}(x)=\eta_{\mu\nu}}.$

Conformal Anomaly \equiv Trace Anomaly

Conformal anomaly (\equiv trace anomaly) [Deser, Duff, Isham(1976)]

$$T_{\mu}^{\ \mu}(x) = a \mathbf{E}_{2}(x) \equiv aR(x) \qquad (D=2)$$
$$T_{\mu}^{\ \mu}(x) = \mathcal{A}(x) \equiv a \mathbf{E}_{4}(x) + c C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}(x) \quad (D=4)$$

where $\mathbf{E}_4(x) \equiv \mathbf{Euler}$ number density

$$\mathbf{E}_4 \equiv R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$
$$C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 2R_{\mu\nu}R^{\mu\nu} + \frac{1}{3}R^2$$

Coefficients c_s and a_s for fields of spin s (with $s \leq 2$) were computed already long ago.

[Duff(1977);Christenses,Duff(1978);Fradkin,Tseytlin(1982); Tseytlin(2013);Eguchi,Gilkey, Hanson, Phys.Rep.66(1980)213; see also "Path integrals and anomalies in curved space" by Bastianelli,van Nieuwenhuizen]

NB: further contribution to anomaly $\propto \Box R$ can be removed by *local* counterterm R^2 .

Anomalous Effective Action

Anomaly can be obtained by varying anomalous effective action $\Gamma_{\text{anom}} = \Gamma_{\text{anom}}[g]$

$$\mathcal{A}(x) = -\frac{2}{\sqrt{-g(x)}} g_{\mu\nu}(x) \frac{\delta\Gamma_{\text{anom}}[g]}{\delta g_{\mu\nu}(x)}$$

but this effective action is necessarily *non-local*.

Simplest example: string theory in *non-critical* dimension has a trace anomaly $T^{\mu}{}_{\mu} \propto R \Rightarrow$ leads to anomalous effective action = Liouville theory. [Polyakov(1981)]

$$\Gamma_{\rm anom}^{D=2} \propto \int d^2 x \sqrt{-g} R \,\Box_g^{-1} R$$

- new propagating degree of freedom (longitudinal mode of world sheet metric = Liouville field)
 - \Rightarrow changes physics in dramatic ways!

Analog for gravity in D = 4: non-local actions that give *a*-anomaly *exactly* are known, for instance [Riegert(1984)]

$$\Gamma_{\text{anom}}[g] = \int d^4x d^4y \sqrt{-g(x)} \sqrt{-g(y)} \left(\mathbf{E}_4 - \frac{2}{3} \Box_g R \right) (x) G^P(x,y) \left(\mathbf{E}_4 - \frac{2}{3} \Box_g R \right) (y)$$

with $\triangle^P G^P(x) = \delta^{(4)}(x)$, and 4th order operator [Paneitz(1983)]

$$\triangle^P \equiv \Box_g \Box_g + 2\nabla_\mu \left(R^{\mu\nu} - \frac{1}{3} g^{\mu\nu} R \right) \nabla_\mu$$

However, no closed form actions are known that have the correct conformal properties (as would be obtained from Feynman diagrams), despite many efforts.

[Deser,Schwimmer(1993);Erdmenger,Osborn(1998);Deser(2000);Barvinsky et al.(1998); Mazur,Mottola(2001);...]

In lowest order

$$\Gamma_{\text{anom}}^{D=4} \propto \int d^4x \sqrt{-g} \mathbf{E}_4 \square_g^{-1} R + \cdots$$

where \cdots stands for *infinitely many* (non-local) terms.

While

$$\mathcal{A}(x) = -\frac{2}{\sqrt{-g(x)}} g_{\mu\nu}(x) \frac{\delta\Gamma_{\text{anom}}[g]}{\delta g_{\mu\nu}(x)}$$

is local, contribution to Einstein equations

$$\ell_{PL}^{-2} \Big[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \Big] = -\frac{2}{\sqrt{-g(x)}} \frac{\delta \Gamma_{\text{anom}}[g]}{\delta g^{\mu\nu}(x)} + \cdots$$

in general *remains non-local* for non-scalar modes.

Claim: non-localities from \Box_g^{-1} in $\Gamma_{\text{anom}}[g]$ can 'overwhelm' smallness of Planck scale and produce observable deviations for Einstein's equations!

... if Γ_{anom} is to be added to classical action [cf.E.Mottola (since 2001)]

Typical correction is (symmetrized traceless part of)

$$\propto
abla_{\mu} (G^{\mathrm{ret}} \star \mathbf{E}_4) \nabla_{\nu} (G^{\mathrm{ret}} \star R) + \cdots$$

with retarded propagator G^{ret} in space-time background given by metric $g_{\mu\nu}$ solving classical Einstein equations. For order of magnitude estimate, evaluate this integral for a (conformally flat) cosmological background

$$ds^2 = a(\eta)^2(-d\eta^2 + d\mathbf{x}^2)$$

by integrating from end of radiation era (= t_{rad}) back to $t_0 = n_* \ell_{PL}$, with $a(\eta) = \eta/(2t_{rad})$ and $\eta = 2\sqrt{tt_{rad}}$ and with retarded Green's function [Waylen(1978)]

$$G^{\text{ret}}(\eta, \mathbf{x}; \eta', \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \cdot \frac{\delta(\eta - \eta' - |\mathbf{x} - \mathbf{y}|)}{a(\eta)a(\eta')}$$

Resulting correction on r.h.s. of Einstein's equations

$$T_{00}^{\text{anom}} \sim 10^{-5} t_{\text{rad}}^{-1} (n_* \ell_{\text{PL}})^{-3}$$

'beats' factor ~ $(t_{\rm rad}\ell_{\rm PL})^{-2}$ on l.h.s. even for $n_* \sim 10^8$!

Similar results from evaluating contribution of Riegert action with Green's function $\triangle^P G_P(x, y) = \delta^{(4)}(x, y)$

$$G_P(\eta, \mathbf{x}; \eta', \mathbf{y}) = \frac{1}{8\pi} \theta(\eta - \eta' - |\mathbf{x} - \mathbf{y}|) \quad \text{(for any } a(\eta) \text{!)}$$

Modifications of Einstein's equations

 \rightarrow corrections can be *exactly* evaluated for conformally flat background [Goadazgar,Meissner,HN:1612.01296]

$$\ell_{PL}^{-2}G_{\mu\nu} \propto \int d^4y \int d^4z \sqrt{-g(x)} \nabla_{\alpha} \nabla_{\mu} \nabla_{\nu} G_P(x,y) \nabla^{\alpha} G_P(x,z)$$

+ plus many more terms

Evaluation of integrals for conformally flat background produces many terms of the same order of magnitude as l.h.s. ... idem for slightly non-homogeneous backgrounds, and for action with dilaton τ and spontaneously broken conformal symmetry [Schwimmer, Theisen(2011)]

$$W = -a \int d^4x \sqrt{-g} \left(\frac{1}{f} \tau \mathbf{E}_4 + \frac{2}{f^2} G^{\mu\nu} \partial_\mu \tau \partial_\nu \tau + \frac{4}{f^3} \partial^\mu \tau \partial_\mu \tau \Box \tau - \frac{2}{f^4} (\partial^\mu \tau \partial_\mu \tau)^2 \right)$$

 \rightarrow looks like generic phenomenon, and could thus affect any solution of Einstein equations!

 \Rightarrow need to cancel conformal anomalies?

Cancel	ling	cont	formal	anomal	ies
Cancer	ung.	COIL	orma	anoma	IICS

	ma	assless	massive		
	C_S	a_s	\bar{c}_s	\bar{a}_s	
0 (0*)	$\frac{3}{2}\left(\frac{3}{2}\right)$	$-\frac{1}{2}(\frac{179}{2})$	$\frac{3}{2}(\varnothing)$	$-\frac{1}{2}(\varnothing)$	
$\frac{1}{2}$	$\frac{9}{2}$	$-\frac{11}{4}$	$\frac{9}{2}$	$-\frac{11}{4}$	
1	18	-31	$\frac{39}{2}$	$-\frac{63}{2}$	
$\frac{3}{2}$	$-\frac{411}{2}$	$\frac{589}{4}$	-201	$\frac{289}{2}$	
2	783	-571	$\frac{1605}{2}$	$-\frac{1205}{2}$	

- \bar{c}_s and \bar{a}_s include lower helicities: $\bar{c}_1 = c_1 + c_0$, etc. (but numbers need to be re-checked for $s = \frac{3}{2}, 2!$)
- Gravitinos and supergravity needed for cancellation
- No cancellation possible for $N \le 4$ supergravities

NB: gravitino contribution may evade positivity properties because of ghost contribution *and* because there does not exist a gauge invariant traceless energy momentum tensor for $s = \frac{3}{2}$.

$$c_{2} + 5c_{\frac{3}{2}} + 10c_{1} + 11c_{\frac{1}{2}} + 10c_{0} = 0 \qquad (N = 5)$$

$$c_{2} + 6c_{\frac{3}{2}} + 16c_{1} + 26c_{\frac{1}{2}} + 30c_{0} = 0 \qquad (N = 6)$$

$$c_{2} + 8c_{\frac{3}{2}} + 28c_{1} + 56c_{\frac{1}{2}} + 70c_{0} = 0 \qquad (N = 8)$$

Old result: combined contribution $\sum_{s} (c_s + a_s)$ vanishes for all $N \ge 3$ theories with appropriate choice of field representations for spin zero fields [Townsend,HN(1981)].

Thus: conformal anomalies for $\sum_{s} a_{s}$ and $\sum_{s} c_{s}$ cancel only for $N \ge 5$ supergravities! [Meissner,HN(2016)]

... as they do for 'composite' U(5), U(6) and SU(8) R-symmetry anomalies. [Marcus(1985)]

Related to possible finiteness of $N \ge 5$ supergravities?

Idem for D=11 SUGRA compactified $AdS_4 \times S^7$

'Floor-by-floor' cancellation [Cf.Gibbons,HN(1985)]: for all n

 $\bar{c}_2 f_2(n) + \bar{c}_3 f_3(n) + \bar{c}_1 f_1(n) + \bar{c}_1 f_1(n) + \bar{c}_1 f_1(n) + \bar{c}_0 f_0(n) = 0$

where $f_s(n) \equiv \sum$ (dimensions of SO(8) spin-s irreps) at Kaluza-Klein level n (no anomalies for odd D).

Conceptual Issues

Why worry about conformal anomalies in theories that are not even classically conformally invariant?

HOWEVER: recall axial anomaly and anomalous conservation of axial current

$$\partial^{\mu}J^{5}_{\mu} = 2im\bar{\psi}\gamma^{5}\psi + \frac{\alpha}{8\pi}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

 \rightarrow anomaly is crucial even in presence of explicitly broken axial symmetry ($m \neq 0$).

Idem for gauge anomalies in Standard Model: these must cancel even when quarks and leptons acquire masses via spontaneous symmetry breaking.

Is there a hidden conformal structure behind $N \ge 5$ supergravities (and M Theory)? But cannot be conformal supergravity in any conventional sense...

Outlook

V. Mukhanov: "You cannot figure out the fundamental theory by simply looking at the sky!"

But maybe there is a way...